Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 875
Filtrar
1.
Oncol Res ; 32(4): 691-702, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560565

RESUMO

Osteosarcoma is a malignant tumor originating from bone tissue that progresses rapidly and has a poor patient prognosis. Immunotherapy has shown great potential in the treatment of osteosarcoma. However, the immunosuppressive microenvironment severely limits the efficacy of osteosarcoma treatment. The dual pH-sensitive nanocarrier has emerged as an effective antitumor drug delivery system that can selectively release drugs into the acidic tumor microenvironment. Here, we prepared a dual pH-sensitive nanocarrier, loaded with the photosensitizer Chlorin e6 (Ce6) and CD47 monoclonal antibodies (aCD47), to deliver synergistic photodynamic and immunotherapy of osteosarcoma. On laser irradiation, Ce6 can generate reactive oxygen species (ROS) to kill cancer cells directly and induces immunogenic tumor cell death (ICD), which further facilitates the dendritic cell maturation induced by blockade of CD47 by aCD47. Moreover, both calreticulin released during ICD and CD47 blockade can accelerate phagocytosis of tumor cells by macrophages, promote antigen presentation, and eventually induce T lymphocyte-mediated antitumor immunity. Overall, the dual pH-sensitive nanodrug loaded with Ce6 and aCD47 showed excellent immune-activating and anti-tumor effects in osteosarcoma, which may lay the theoretical foundation for a novel combination model of osteosarcoma treatment.


Assuntos
Neoplasias Ósseas , Clorofilídeos , Nanopartículas , Neoplasias , Osteossarcoma , Fotoquimioterapia , Humanos , Antígeno CD47 , Linhagem Celular Tumoral , Osteossarcoma/tratamento farmacológico , Imunoterapia , Neoplasias Ósseas/tratamento farmacológico , Concentração de Íons de Hidrogênio , Microambiente Tumoral
2.
Acta Biomater ; 179: 272-283, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460931

RESUMO

Anticancer drugs used for systemic chemotherapy often exhibit off-target toxicity and uncontrolled drug release due to their lack of targeting. To improve the bioavailability of drugs and reduce side effects, we have developed a mixed micelle of nanomedicine composed of two prodrugs with surface modified monoclonal antibody for cancer therapy. In this system, Nimotuzumab was used as targeting ligands of the mixed micelles (named as DCMMs) that is composed of polymer-doxorubicin prodrug (abbreviated as PEG-b-P(GMA-ss-DOX)) and maleimide polyethylene glycol-chlorin e6 (abbreviated as Mal-PEG-Ce6). The mixed micelles modified with Nimotuzumab (named as NTZ-DCMMs) bind to overexpressed EGFR receptors on Hepatoma-22 (H22) cells. Disulfide bonds in PEG-b-P(GMA-ss-DOX) are disrupted in tumor microenvironment, inducing the reduction-responsive release of DOX and leading to tumor cell apoptosis. Simultaneously, Chlorin e6 (Ce6) produced plenty of singlet oxygen (1O2) under laser irradiation to kill tumor cells. In vivo biological distribution and antineoplastic effect experiments demonstrate that NTZ-DCMMs enhanced drug enrichment at tumor sites through targeting function of antibody, dramatically suppressing tumor growth and mitigating cardiotoxicity of drugs. All results prove that NTZ-DCMMs have the ability to actively target H22 cells and quickly respond to tumor microenvironment, which is expected to become an intelligent and multifunctional drug delivery carrier for efficient chemotherapy and photodynamic therapy of hepatoma. STATEMENT OF SIGNIFICANCE: Anticancer drugs used for systemic chemotherapy often exhibit off-target toxicity due to their lack of targeting. Therefore, it's necessary to develop effective, targeted, and collaborative treatment strategies. We construct a mixed micelle of nanomedicine based on two polymer prodrugs and modified with monoclonal antibody on surface for cancer therapy. Under the tumor cell microenvironment, the disulfide bonds of polymer-ss-DOX were broken, effectively triggering DOX release. The photosensitizer Ce6 could generate a large amount of ROS under light, which synergistically promotes tumor cell apoptosis. By coupling antibodies to the hydrophilic segments of polymer micelles, drugs can be specifically delivered. Compared with monotherapy, the combination of chemotherapy and photodynamic therapy can significantly enhance the therapeutic effect of liver cancer.


Assuntos
Clorofilídeos , Doxorrubicina , Micelas , Nanomedicina , Fotoquimioterapia , Porfirinas , Pró-Fármacos , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Doxorrubicina/farmacologia , Doxorrubicina/química , Animais , Fotoquimioterapia/métodos , Linhagem Celular Tumoral , Nanomedicina/métodos , Porfirinas/química , Porfirinas/farmacologia , Porfirinas/farmacocinética , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/química , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacocinética , Camundongos , Polímeros/química , Polímeros/farmacologia , Camundongos Endogâmicos BALB C , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Apoptose/efeitos dos fármacos
3.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542430

RESUMO

To identify the vascular alteration by photodynamic therapy (PDT), the utilization of high-resolution, high-speed, and wide-field photoacoustic microscopy (PAM) has gained enormous interest. The rapid changes in vasculature during PDT treatment and monitoring of tumor tissue activation in the orthotopic pancreatic cancer model have received limited attention in previous studies. Here, a fully two-axes waterproof galvanometer scanner-based photoacoustic microscopy (WGS-PAM) system was developed for in vivo monitoring of dynamic variations in micro blood vessels due to PDT in an orthotopic pancreatic cancer mouse model. The photosensitizer (PS), Chlorin e6 (Ce6), was utilized to activate antitumor reactions in response to the irradiation of a 660 nm light source. Microvasculatures of angiogenesis tissue were visualized on a 40 mm2 area using the WGS-PAM system at 30 min intervals for 3 h after the PDT treatment. The decline in vascular intensity was observed at 24.5% along with a 32.4% reduction of the vascular density at 3 h post-PDT by the analysis of PAM images. The anti-vascularization effect was also identified with fluorescent imaging. Moreover, Ce6-PDT increased apoptotic and necrotic markers while decreasing vascular endothelial growth factor (VEGF) expression in MIA PaCa-2 and BxPC-3 pancreatic cancer cell lines. The approach of the WGS-PAM system shows the potential to investigate PDT effects on the mechanism of angiographic dynamics with high-resolution wide-field imaging modalities.


Assuntos
Clorofilídeos , Neoplasias Pancreáticas , Fotoquimioterapia , Porfirinas , Camundongos , Animais , Fotoquimioterapia/métodos , Microscopia , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Linhagem Celular Tumoral , Porfirinas/farmacologia , Porfirinas/uso terapêutico
4.
Mol Pharm ; 21(4): 1705-1718, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38466144

RESUMO

Photodynamic therapy (PDT) is often applied in a clinical setting to treat bladder cancer. However, current photosensitizers report drawbacks such as low efficacy, low selectivity, and numerous side effects, which have limited the clinical values of PDT for bladder cancer. Previously, we developed the first bladder cancer-specific aptamer that can selectively bind to and be internalized by bladder tumor cells versus normal uroepithelium cells. Here, we use an aptamer-based drug delivery system to deliver photosensitizer chlorine e6 (Ce6) into bladder tumor cells. In addition to Ce6, we also incorporate catalase into the drug complex to increase local oxygen levels in the tumor tissue. Compared with free Ce6, an aptamer-guided DNA nanotrain (NT) loaded with Ce6 and catalase (NT-Catalase-Ce6) can specifically recognize bladder cancer cells, produce oxygen locally, induce ROS in tumor cells, and cause mitochondrial apoptosis. In an orthotopic mouse model of bladder cancer, the intravesical instillation of NT-Catalase-Ce6 exhibits faster drug internalization and a longer drug retention time in tumor tissue compared with that in normal urothelium. Moreover, our modified PDT significantly inhibits tumor growth with fewer side effects such as cystitis than free Ce6. This aptamer-based photosensitizer delivery system can therefore improve the selectivity and efficacy and reduce the side effects of PDT treatment in mouse models of bladder cancer, bearing a great translational value for bladder cancer intravesical therapy.


Assuntos
Clorofilídeos , Fotoquimioterapia , Porfirinas , Neoplasias da Bexiga Urinária , Animais , Camundongos , Catalase/uso terapêutico , Linhagem Celular Tumoral , Oxigênio , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Humanos
5.
J Mater Chem B ; 12(13): 3282-3291, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38487900

RESUMO

Sonodynamic therapy (SDT), an emerging cancer treatment with significant potential, offers the advantages of non-invasiveness and deep tissue penetrability. The method involves activating sonosensitizers with ultrasound to generate reactive oxygen species (ROS) capable of eradicating cancer cells, addressing the challenge faced by photodynamic therapy (PDT) where conventional light sources struggle to penetrate deep tissues, impacting treatment efficacy. This study addresses prevalent challenges in numerous nanodiagnostic and therapeutic agents, such as intricate synthesis, poor repeatability, low stability, and high cost, by introducing a streamlined one-step assembly method for nanoparticle preparation. Specifically, the sonosensitizer Chlorin e6 (Ce6) and the chemotherapy drug erlotinib are effortlessly combined and self-assembled under sonication, yielding carrier-free nanoparticles (EC-NPs) for non-small cell lung cancer (NSCLC) treatment. The resulting EC-NPs exhibit optimal drug loading capacity, a simplified preparation process, and robust stability both in vitro and in vivo, owing to their carrier-free characteristics. Under the synergistic treatment of sonodynamic therapy and chemotherapy, EC-NPs induce an excess of reactive oxygen in tumor tissue, prompting apoptosis of cancer cells and reducing their proliferative capacity. Both in vitro and in vivo experiments demonstrate superior therapeutic effects of EC-NPs under ultrasound conditions compared to free Ce6. In summary, our research findings highlight that the innovatively designed carrier-free sonosensitizer EC-NPs present a therapeutic option with commendable efficacy and minimal side effects.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Clorofilídeos , Neoplasias Pulmonares , Nanopartículas , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos
6.
J Control Release ; 366: 798-811, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184236

RESUMO

Oral cancer is a disease with high morbidity and mortality worldwide and greatly impacts the quality of life, especially in patients with advanced stages. Photodynamic therapy (PDT) is one of the most effective clinical treatments for oral cancers. However, most clinically applied photosensitizers have several deficiencies, including oxygen dependence, poor aqueous solubility, and a lack of tumor-targeting ability. Herein, the carrier-free multifunctional Sorafenib (Sor), chlorin e6 (Ce6), and Fe3+ self-assembly co-delivery nanoparticles (Sor-Ce6 NPs) were constructed via combining a ferroptosis inducer Sor and a photosensitizer Ce6 for synergetic therapy. The as-synthesized Sor-Ce6 NPs presented excellent colloidal stability and water dispersity with good in vivo tumor-targeting ability. More significantly, the low dose of Sor-Ce6 NPs had little dark toxicity but produced significantly enhanced ROS and supplied O2 sustainably to increase phototoxicity through ferroptosis pathway. Notably, the Sor-Ce6 NPs showed significantly higher in vitro and in vivo anti-tumor efficacy than the Sor/Ce6 mixture due to the improvement of cellular uptake and the incorporation of foreign Fe ions in the system, which also confer the T1 magnetic resonance-guided imaging ability to the formed Sor-Ce6 NPs. Our study demonstrates a promising self-assembled strategy for overcoming hypoxia-related PDT resistance for oral cancer treatment.


Assuntos
Clorofilídeos , Ferroptose , Neoplasias Bucais , Nanopartículas , Fotoquimioterapia , Porfirinas , Humanos , Sorafenibe , Qualidade de Vida , Neoplasias Bucais/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/uso terapêutico , Linhagem Celular Tumoral
7.
Photodiagnosis Photodyn Ther ; 45: 103969, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211779

RESUMO

BACKGROUND: The study is aimed at developing a method for monitoring photodynamic therapy (PDT) of a tumor using chlorin-type photosensitizers (PSs). Lack of monitoring of chlorin e6 (Cе6) photobleaching, hemoglobin oxygenation and blood flow during light exposure can limit the PDT effectiveness. MATERIALS AND METHODS: Phototheranostics includes spectral-fluorescence diagnostics of Ce6 distribution in the NIR range and PDT with simultaneous assessment of hemoglobin oxygenation and tumor blood flow. Fluorescence diagnostics and PDT were performed using the single laser λexc=660 ± 5 nm. RESULTS: Combined spectroscopic PDT monitoring method allowed simultaneous estimation of Ce6 photobleaching, hemoglobin oxygenation and tumor vascular thrombosis during PDT without interrupting the therapeutic light exposure. CONCLUSION: The developed method of tumor phototheranostics using chlorin-type PSs may make it possible to personalize the duration of therapeutic light exposure during PDT.


Assuntos
Clorofilídeos , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/uso terapêutico , Fluorescência , Fotoquimioterapia/métodos , Hemoglobinas
8.
ACS Biomater Sci Eng ; 10(3): 1869-1879, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38291563

RESUMO

Localized photodynamic therapy (PDT) uses a polymeric-photosensitizer (PS)-embedded, covered self-expandable metallic stent (SEMS). PDT is minimally invasive and a noteworthy potential alternative for treating esophageal strictures, where surgery is not a viable option. However, preclinical evidence is insufficient, and optimized irradiation energy dose ranges for localized PDT are unclear. Herein, we validated the irradiation energy doses of the SEMS (embedded in a PS using chlorin e6 [Ce6] and covered in silicone) and PDT-induced tissue changes in a rat esophagus. Cytotoxicity and phototoxicity in the Ce6-embedded SEMS piece with laser irradiation were significantly higher than that of the silicone-covered SEMS with or without laser and the Ce6-embedded silicone-covered SEMS without laser groups (all p < 0.001). Moreover, surface morphology, atomic changes, and homogeneous coverage of the Ce6-embedded silicone-covered membrane were confirmed. The ablation range of the porcine liver was proportionally increased with the irradiation dose (all p < 0.001). The ablation region was identified at different irradiation energy doses of 50, 100, 200, and 400 J/cm2. The in vivo study in the rat esophagus comprised a control group and 100, 200, and 400 J/cm2 energy-dose groups. Finally, histology and immunohistochemistry (TUNEL and Ki67) confirmed that the optimized Ce6-embedded silicone-covered SEMS with selected irradiation energy doses (200 and 400 J/cm2) effectively damaged the esophageal tissue without ductal perforation. The polymeric PS-embedded silicone-covered SEMS can be easily placed via a minimally invasive approach and represents a promising new approach for the palliative treatment of malignant esophageal strictures.


Assuntos
Clorofilídeos , Estenose Esofágica , Fotoquimioterapia , Porfirinas , Stents Metálicos Autoexpansíveis , Humanos , Ratos , Suínos , Animais , Estenose Esofágica/tratamento farmacológico , Estenose Esofágica/cirurgia , Cuidados Paliativos , Silicones , Constrição Patológica/tratamento farmacológico , Porfirinas/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Polímeros/uso terapêutico
9.
Molecules ; 28(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37959817

RESUMO

The aim of this study is to prepare redox-sensitive nanophotosensitizers for the targeted delivery of chlorin e6 (Ce6) against cervical cancer. For this purpose, Ce6 was conjugated with ß-cyclodextrin (bCD) via a disulfide bond, creating nanophotosensitizers that were fabricated for the redox-sensitive delivery of Ce6 against cancer cells. bCD was treated with succinic anhydride to synthesize succinylated bCD (bCDsu). After that, cystamine was attached to the carboxylic end of bCDsu (bCDsu-ss), and the amine end group of bCDsu-ss was conjugated with Ce6 (bCDsu-ss-Ce6). The chemical composition of bCDsu-ss-Ce6 was confirmed with 1H and 13C NMR spectra. bCDsu-ss-Ce6 nanophotosensitizers were fabricated by a dialysis procedure. They formed small particles with an average particle size of 152.0 ± 23.2 nm. The Ce6 release rate from the bCDsu-ss-Ce6 nanophotosensitizers was accelerated by the addition of glutathione (GSH), indicating that the bCDsu-ss-Ce6 nanophotosensitizers have a redox-sensitive photosensitizer delivery capacity. The bCDsu-ss-Ce6 nanophotosensitizers have a low intrinsic cytotoxicity against CCD986Sk human skin fibroblast cells as well as Ce6 alone. However, the bCDsu-ss-Ce6 nanophotosensitizers showed an improved Ce6 uptake ratio, higher reactive oxygen species (ROS) production, and phototoxicity compared to those of Ce6 alone. GSH addition resulted in a higher Ce6 uptake ratio, ROS generation, and phototoxicity than Ce6 alone, indicating that the bCDsu-ss-Ce6 nanophotosensitizers have a redox-sensitive biological activity in vitro against HeLa human cervical cancer cells. In a tumor xenograft model using HeLa cells, the bCDsu-ss-Ce6 nanophotosensitizers efficiently accumulated in the tumor rather than in normal organs. In other words, the fluorescence intensity in tumor tissues was significantly higher than that of other organs, while Ce6 alone did not specifically target tumor tissue. These results indicated a higher anticancer activity of bCDsu-ss-Ce6 nanophotosensitizers, as demonstrated by their efficient inhibition of the growth of tumors in an in vivo animal tumor xenograft study.


Assuntos
Clorofilídeos , Nanopartículas , Fotoquimioterapia , Porfirinas , Neoplasias do Colo do Útero , beta-Ciclodextrinas , Animais , Feminino , Humanos , Fotoquimioterapia/métodos , Células HeLa , Espécies Reativas de Oxigênio , Linhagem Celular Tumoral , Neoplasias do Colo do Útero/tratamento farmacológico , Fármacos Fotossensibilizantes/química , Oxirredução , Porfirinas/farmacologia , Porfirinas/química , Nanopartículas/química
10.
J Drug Target ; 31(10): 1111-1127, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37962293

RESUMO

Macrophages are the most abundant cell group in atherosclerosis (AS) lesions and play a vital role in all stages of AS progression. Recent research has shown that reactive oxygen species (ROS) generation from photodynamic therapy (PDT) induces macrophage autophagy to improve abnormal lipid metabolism and inflammatory environment. Especially in macrophage-derived foam cells, which has become a potential strategy for the treatment of AS. In this study, we prepared the conjugate (DB) of dextran (DEX) and bovine serum albumin (BSA). The DB was used as the emulsifier to prepare nanoemulsion loaded with upconversion nanoparticles (UCNPs) and chlorin e6 (Ce6) (UCNPs-Ce6@DB). The DEX modified on the surface of the nanoemulsion can recognise and bind to the scavenger receptor class A (SR-A) highly expressed on macrophages and promote the uptake of macrophage-derived foam cells in AS plates through SR-A-mediated endocytosis. In addition, UCNPs-Ce6@DB-mediated PDT enhanced ROS generation and induced autophagy in macrophage-derived foam cells, enhanced the expression of ABCA1, a protein closely related to cholesterol efflux, and inhibited the secretion of pro-inflammatory cytokines. Ultimately, UCNPs-Ce6@DB was shown to inhibit plaque formation in mouse models of AS. In conclusion, UCNPs-Ce6@DB offers a promising treatment for AS.


Assuntos
Aterosclerose , Clorofilídeos , Nanopartículas , Fotoquimioterapia , Animais , Camundongos , Fármacos Fotossensibilizantes/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Polissacarídeos , Aterosclerose/tratamento farmacológico , Linhagem Celular Tumoral
11.
Photodiagnosis Photodyn Ther ; 43: 103725, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37500031

RESUMO

In our previous studies, Chlorin-e6 (Ce6) demonstrated a significant reduction of microorganisms' viability against multi-species biofilm related to periodontitis while irradiated with blue light. However, the conjugation of Ce6 and antimicrobial peptides, and the incorporation of this photosensitizer in a nanocarrier, is still poorly explored. We hypothesized that chlorin-e6 conjugated to the antimicrobial peptide LL-37 loaded nanoemulsion could inhibit a multi-species biofilm related to periodontitis during photodynamic therapy (PDT), the pre-treatment with hydrogen peroxide was also tested. The nanoemulsion (NE) incorporated with Ce6 was characterized regarding the physiochemical parameters. Images were obtained by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Later, the Ce6 and LL-37 incorporated in NE was submitted to UV-Vis analysis and Reactive Oxygen Species (ROS) assay. Finally, the combined formulation (Ce6+LL-37 in nanoemulsion) was tested against multi-species biofilm related to periodontitis. The formed nanoformulation was kinetically stable, optically transparent with a relatively small droplet diameter (134.2 unloaded and 146.9 loaded), and weak light scattering. The NE system did not impact the standard UV-VIS spectra of Ce6, and the ROS production was improved while Ce6 was incorporated in the NE. The combination of Ce6 and LL-37 in NE was effective to reduce the viability of all bacteria tested. The treatment with hydrogen peroxide previous to PDT significantly impacted bacterial viability. The current aPDT regimen was the best already tested against periodontal biofilm by our research team. Our results suggest that this combined protocol must be exploited for clinical applications in localized infections such as periodontal disease. - Nanoemulsion demonstrated to be an excellent nanocarrier for photodynamic application. - Chlorin-e6 incorporated in nanoemulsion showed great physicochemical and biophotonic parameters. - The combination of chlorin-e6 and LL-37 peptide in nanoemulsion is effective to eliminate periodontal pathogenic bacteria. - The treatment with hydrogen peroxide previous to PDT significantly impacted bacterial viability.


Assuntos
Clorofilídeos , Periodontite , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Catelicidinas , Fotoquimioterapia/métodos , Peptídeos Antimicrobianos , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio , Periodontite/tratamento farmacológico , Biofilmes , Linhagem Celular Tumoral
12.
Photodiagnosis Photodyn Ther ; 42: 103642, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37271488

RESUMO

Sono-photodynamic therapy (SPDT) is an oxidative stress-dependant antitumour treatment modality. Due to the hypoxic tumour microenvironment, the antitumour effect of SPDT is limited. In this study, we developed lipid vesicles to transport a photosensitizer (chlorin e6, Ce6) and oxygen into tumours to promote SPDT efficiency on triple-negative breast cancer in vitro and in vivo. The results showed that compared with the same concentration of free Ce6, Lipo-Ce6 produced a higher singlet oxygen level under light irradiation. Cellular Lipo-Ce6 accumulation was 4-fold higher than that of free Ce6. The cytotoxicity on 4T1 cells caused by Lipo-Ce6-SPDT was significantly stronger than that caused by free Ce6-SPDT, and oxygen microbubbles (O2MB) further enhanced the cytotoxicity of Lipo-Ce6-SPDT under hypoxic conditions. Cellular ROS production in the Lipo-Ce6-SPDT+O2MB group was approximately 2.5-fold higher than that in the Lipo-Ce6-SPDT+C3F8MB group. Furthermore, O2MB rapidly relieved 4T1 subcutaneous xenograft hypoxia conditions under ultrasound exposure and significantly improved the antitumour activity of SPDT in vivo. These results indicate that the combination of O2MB and a high-activity liposome photosensitizer can significantly enhance the antitumour efficiency of SPDT for hypoxic tumours.


Assuntos
Clorofilídeos , Fotoquimioterapia , Porfirinas , Neoplasias de Mama Triplo Negativas , Humanos , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/farmacologia , Hipóxia Tumoral , Linhagem Celular Tumoral , Microbolhas , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Oxigênio , Porfirinas/farmacologia , Microambiente Tumoral
13.
Lasers Med Sci ; 38(1): 115, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37133615

RESUMO

A growing amount of experimental evidence has proven that the application of gold nanorods (AuNRs) in photodynamic therapy (PDT) can significantly enhance its therapeutic efficacy. The aim of this study was to establish a protocol for investigating the effect of gold nanorods loaded with the photosensitizer chlorin e6 (Ce6) on photodynamic therapy in the OVCAR3 human ovarian cancer cell line in vitro and to determine whether the PDT effect was different from that of Ce6 alone. OVCAR3 cells were randomly divided into three groups: the control group, Ce6-PDT group, and AuNRs@SiO2@Ce6-PDT group. Cell viability was measured by MTT assay. The generation of reactive oxygen species (ROS) was measured by a fluorescence microplate reader. Cell apoptosis was detected by flow cytometry. The expression of apoptotic proteins was detected by immunofluorescence and western blotting. The results showed that compared with that of the Ce6-PDT group, the cell viability of the AuNRs@SiO2@Ce6-PDT group was significantly decreased (P < 0.05) in a dose-dependent manner, and ROS production increased significantly (P < 0.05). The flow cytometry results showed that the proportion of apoptotic cells in the AuNRs@SiO2@Ce6-PDT group was significantly higher than that in the Ce6-PDT group (P < 0.05). Immunofluorescence and western blot results showed that the protein expression levels of cleaved caspase-9, cleaved caspase-3, cleaved PARP, and Bax in the AuNRs@SiO2@Ce6-PDT-treated-OVCAR3 cells were higher than those in the Ce6-PDT-treated cells (P < 0.05), and the protein expression levels of caspase-3, caspase-9, PARP, and Bcl-2 were slightly lower than those in the Ce6-PDT group (P < 0.05). In summary, our results show that AuNRs@SiO2@Ce6-PDT has a significantly stronger effect on OVCAR3 cells than the effect of Ce6-PDT alone. The mechanism may be related to the expression of Bcl-2 family and caspase family in the mitochondrial pathway.


Assuntos
Clorofilídeos , Nanotubos , Neoplasias Ovarianas , Fotoquimioterapia , Porfirinas , Humanos , Feminino , Fotoquimioterapia/métodos , Caspase 3/metabolismo , Dióxido de Silício , Caspase 9/metabolismo , Apoptose , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Ouro/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Clorofilídeos/farmacologia
14.
Photodiagnosis Photodyn Ther ; 42: 103558, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37030434

RESUMO

OBJECTIVE: Photodynamic therapy (PDT) may be an effective therapeutic strategy for colorectal cancer at an early stage. However, malignant cells' resistance to photodynamic agents can lead to treatment failure. MYBL2 (B-Myb) is an oncogene in colorectal carcinogenesis and development, for which little research has focused on its effect on drug resistance. MATERIALS AND METHODS: In the present work, a colorectal cancer cell line with a stable knockdown of MYBL2 (ShB-Myb) was constructed first. Chlorin e6 (Ce6) was utilized to induced PDT. The anti-cancer efficacy was measured by CCK-8, PI staining, and Western blots. The drug uptake of Ce6 was assayed by flow cytometry and confocal microscopy. The ROS generation was detected by the CellROX probe. DDSB and DNA damage were assayed through comet experiment and Western blots. The over-expression of MYBL2 was conducted by MYBL2 plasmid. RESULTS: The findings indicated that the viability of ShB-Myb treated with Ce6-PDT was not decreased compared to control SW480 cells (ShNC), which were resistant to PDT. Further investigation revealed reduced photosensitizer enrichment and mitigated oxidative DNA damage in colorectal cancer cells with depressed MYBL2. It turned out that SW480 cells knocking down MYBL2 showed phosphorylation of NF-κB and led to up-regulation of ABCG2 expression thereupon. When MYBL2 was replenished back in MYBL2-deficient colorectal cancer cells, phosphorylation of NF-κB was blocked and ABCG2 expression up-regulation was suppressed. Additionally, replenishment of MYBL2 also increased the enrichment of Ce6 and the efficacy of PDT. CONCLUSION: In summary, MYBL2 absence in colorectal cancer contributes to drug resistance by activating NF-κB to up-regulate ABCG2 and thereby leading to photosensitizer Ce6 efflux. This study provides a novel theoretical basis and strategy for how to effectively improve the anti-tumor efficacy of PDT.


Assuntos
Clorofilídeos , Neoplasias Colorretais , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fotoquimioterapia/métodos , Regulação para Cima , NF-kappa B/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Porfirinas/farmacologia , Linhagem Celular Tumoral , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Neoplasias , Transativadores/metabolismo , Proteínas de Ciclo Celular/metabolismo
15.
Molecules ; 28(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37110713

RESUMO

Details of the structural elucidation of the clinically useful photodynamic therapy sensitizer NPe6 (15) are presented. NPe6, also designated as Laserphyrin, Talaporfin, and LS-11, is a second-generation photosensitizer derived from chlorophyll-a, currently used in Japan for the treatment of human lung, esophageal, and brain cancers. After the initial misidentification of the structure of this chlorin-e6 aspartic acid conjugate as (13), NMR and other synthetic procedures described herein arrived at the correct structure (15), confirmed using single crystal X-ray crystallography. Interesting new features of chlorin-e6 chemistry (including the intramolecular formation of an anhydride (24)) are reported, allowing chemists to regioselectively conjugate amino acids to each available carboxylic acid on positions 131 (formic), 152 (acetic), and 173 (propionic) of chlorin e6 (14). Cellular investigations of several amino acid conjugates of chlorin-e6 revealed that the 131-aspartylchlorin-e6 derivative is more phototoxic than its 152- and 173-regioisomers, in part due to its nearly linear molecular conformation.


Assuntos
Clorofilídeos , Fotoquimioterapia , Porfirinas , Humanos , Fármacos Fotossensibilizantes/química , Fotoquimioterapia/métodos , Porfirinas/química , Aminoácidos , Ácido Aspártico/química
16.
J Mol Evol ; 91(2): 225-235, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36869271

RESUMO

Chlorophyllide a oxygenase (CAO) is responsible for converting chlorophyll a to chlorophyll b in a two-step oxygenation reaction. CAO belongs to the family of Rieske-mononuclear iron oxygenases. Although the structure and reaction mechanism of other Rieske monooxygenases have been described, a member of plant Rieske non-heme iron-dependent monooxygenase has not been structurally characterized. The enzymes in this family usually form a trimeric structure and electrons are transferred between the non-heme iron site and the Rieske center of the adjoining subunits. CAO is supposed to form a similar structural arrangement. However, in Mamiellales such as Micromonas and Ostreococcus, CAO is encoded by two genes where non-heme iron site and Rieske cluster localize on the distinct polypeptides. It is not clear if they can form a similar structural organization to achieve the enzymatic activity. In this study, the tertiary structures of CAO from the model plant Arabidopsis thaliana and the Prasinophyte Micromonas pusilla were predicted by deep learning-based methods, followed by energy minimization and subsequent stereochemical quality assessment of the predicted models. Furthermore, the chlorophyll a binding cavity and the interaction of ferredoxin, which is the electron donor, on the surface of Micromonas CAO were predicted. The electron transfer pathway was predicted in Micromonas CAO and the overall structure of the CAO active site was conserved even though it forms a heterodimeric complex. The structures presented in this study will serve as a basis for understanding the reaction mechanism and regulation of the plant monooxygenase family to which CAO belongs.


Assuntos
Arabidopsis , Clorofilídeos , Clorófitas , Clorofilídeos/metabolismo , Clorofila A/metabolismo , Oxigenases/genética , Oxigenases/química , Oxigenases/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Oxigenases de Função Mista/metabolismo , Plantas , Clorófitas/metabolismo , Ferro/metabolismo
17.
Molecules ; 28(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36903592

RESUMO

Chlorin e6 (Ce6) is among the most used sensitizers in photodynamic (PDT) and sonodynamic (SDT) therapy; its low solubility in water, however, hampers its clinical exploitation. Ce6 has a strong tendency to aggregate in physiological environments, reducing its performance as a photo/sono-sensitizer, as well as yielding poor pharmacokinetic and pharmacodynamic properties. The interaction of Ce6 with human serum albumin (HSA) (i) governs its biodistribution and (ii) can be used to improve its water solubility by encapsulation. Here, using ensemble docking and microsecond molecular dynamics simulations, we identified the two Ce6 binding pockets in HSA, i.e., the Sudlow I site and the heme binding pocket, providing an atomistic description of the binding. Comparing the photophysical and photosensitizing properties of Ce6@HSA with respect to the same properties regarding the free Ce6, it was observed that (i) a red-shift occurred in both the absorption and emission spectra, (ii) a maintaining of the fluorescence quantum yield and an increase of the excited state lifetime was detected, and (iii) a switch from the type II to the type I mechanism in a reactive oxygen species (ROS) production, upon irradiation, took place.


Assuntos
Clorofilídeos , Fotoquimioterapia , Porfirinas , Humanos , Albumina Sérica Humana/metabolismo , Fármacos Fotossensibilizantes/química , Distribuição Tecidual , Porfirinas/química , Fotoquimioterapia/métodos , Linhagem Celular Tumoral
18.
Photodiagnosis Photodyn Ther ; 41: 103321, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36738905

RESUMO

OBJECTIVE: Photoaging is characterized by wrinkles in the skin and the deterioration of the skin barrier function, mainly caused by long-term exposure to ultraviolet (UV) radiation. Photodynamic therapy (PDT) has been shown to treat photoaging. The novel photosensitizer ShengTaiBuFen(STBF) is a derived substance of Chlorin e6(Ce6) that can exert photodynamic effects directly. In this study, we investigated the availability and the mechanism of STBF-PDT in the treatment of photoaging. METHODS: Fluorophotometer was used to determine therapeutic parameters for in vivo experiments. Camera photographs, dermoscopy, HE and Masson staining, skin pH, trans epidermal water loss (TEWL), epidermal water content, and sebum testing were used together to evaluate the results of the treatment. Dark toxicity and therapeutic parameters for in vitro experiments were determined by CCK8 analysis. Scratch assay was used to identify the cell migration of STBF-PDT on HaCaT cells. qPCR and Western blot were used to evaluate the TGF-ß/Smad signaling pathway in human dermal fibroblast (HDF) cells. RESULTS: We investigated the optimal STBF concentration and time of incubation in vivo and in vitro experiments. STBF-PDT improved the skin phenotype of photoaged mice. The skin of photoaged mice treated with 80 J/cm2 STBF-PDT became smooth, while skin flakes were reduced. The epidermis of STBF-PDT-treated mice was thinner, and the cells were neatly arranged, with increased dermal collagen. In vitro, STBF-PDT promoted the migration of HaCaT cells below a light dose of 0.1 J/cm2. HDF cells co-cultured with HaCaT cells treated with low-dose STBF-PDT showed activation of the TGF-ß pathway. CONCLUSION: As a novel photosensitizer, STBF-mediated low-dose PDT could reverse photoaging via the TGF-ß pathway.


Assuntos
Clorofilídeos , Fotoquimioterapia , Porfirinas , Envelhecimento da Pele , Camundongos , Humanos , Animais , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fator de Crescimento Transformador beta , Fotoquimioterapia/métodos , Porfirinas/farmacologia , Porfirinas/uso terapêutico , Linhagem Celular Tumoral
19.
Photodiagnosis Photodyn Ther ; 42: 103328, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36775229

RESUMO

In this work, we incorporated the hydrophobic alkylamide and hydroxyalkylamide derivatives of chlorin e6 into the lipid bilayer of liposomes. We obtained the data on the effectiveness of incorporation of studied compounds and have determined the size of liposomes and their stability when stored in liquid form. We also investigated the bioactivity of chlorin photosensitizers and compared the photodynamic activity of studied compounds in free and liposomal forms.


Assuntos
Clorofilídeos , Fotoquimioterapia , Porfirinas , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Lipossomos , Fotoquimioterapia/métodos , Linhagem Celular Tumoral , Porfirinas/farmacologia , Porfirinas/química
20.
Int J Mol Sci ; 24(4)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36835310

RESUMO

Photodynamic therapy (PDT) can eradicate not only cancer cells but also stimulate an antitumor immune response. Herein, we describe two efficient synthetic methodologies for the preparation of Chlorin e6 (Ce6) from Spirulina platensis and address the phototoxic effect of Ce6 in vitro along with antitumor activity in vivo. Melanoma B16F10 cells were seeded and phototoxicity was monitored by the MTT assay. The C57BL/6 mice were subcutaneously inoculated on the left and right flank with B16F10 cells. The mice were intravenously injected with Ce6 of 2.5 mg/kg and then exposed to red light (660 nm) on the left flank tumors 3 h after the injection. The immune response was studied by analyzing Interferon-gamma (IFN-γ), tumor necrosis factor-alpha (TNF-α), and Interleukin-2 (IL-2) of the right flank tumors through qPCR. Our results revealed that the tumor was suppressed not only in the left flank but also in the right flank, where no PDT was given. The upregulated gene and protein expression of IFN-γ, TNF-α, and IL-2 revealed antitumor immunity due to Ce6-PDT. The findings of this study suggest an efficient methodology of Ce6 preparation and the efficacy of Ce6-PDT as a promising antitumor immune response.


Assuntos
Clorofilídeos , Melanoma Experimental , Fotoquimioterapia , Fármacos Fotossensibilizantes , Animais , Camundongos , Linhagem Celular Tumoral , Clorofilídeos/síntese química , Clorofilídeos/uso terapêutico , Imunoterapia/métodos , Interleucina-2 , Camundongos Endogâmicos C57BL , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/uso terapêutico , Fator de Necrose Tumoral alfa , Melanoma Experimental/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA